Traveling waves

L'objectif de ce TP est d'illustrer les résultats du cours concernant les solutions de type travelling waves des équations de la forme :

$$\frac{\partial u}{\partial t} = f(u) + \frac{\partial^2 u}{\partial x^2} \qquad x \in \mathbb{R} \quad t \in]0, T] \tag{1}$$

On rappelle que ces solutions sont obtenues en cherchant u sous la forme : u(x,t) = v(z), z = x - ct. En fonction du terme f, l'existence de ce type de solution et les valeurs de la vitesse c peuvent être obtenues (cf cours). On résout alors l'équation différentielle :

$$v''(z) + cv'(z) + f(v(z)) = 0, \quad z \in \mathbb{R}, \quad v(-\infty) = 1, \ v(+\infty) = 0.$$
 (2)

On propose dans ce TP de résoudre numériquement l'équation aux dérivées partielles (1), de mettre en évidence la présence de ces ondes propagatives et d'en étudier les propriétés.

1. Résolution numérique de l'équation (1)

On considère une segmentation réguliere en espace, définie par $x_{i+1} = x_i + \delta x$, i = 0, ..., N telle que $x_0 = -a$ et $x_N = a$. On définit la segmentation temporelle par $t^{n+1} = t^n + \delta t$. On utilisera des conditions aux limites nulles en -a et a.

- (a) Ecrire un schéma de discrétisation pour l'équation (1). On prendra une méthode d'Euler pour la discrétisation temporelle, le terme linéaire sera pris implicitement, le terme non-linéaire explicitement. On utilisera un schéma aux différences finies centrées d'ordre 2 en espace pour l'approximation de la dérivée seconde.
- (b) Une fois les conditions aux limites prises en compte, montrer que ce schéma peut s'écrire matriciellement sous la forme :

$$U^{n+1} = (Id - B)^{-1} (U^n + \delta t f(U^n)).$$

On explicitera f et la matrice B.

- (c) Programmer sous *scilab* ce schéma. Vous pourrez récupérer le programme **traveling.sce** http://gchiavassa.perso.centrale-marseille.fr/visible/3A/TravelingWaves/
- (d) La condition initiale u(x, t = 0) sera prise sous forme d'une Gaussienne centrée en x = 0.

2. Etude des solutions

Dans chacun des cas suivants, retrouver numériquement les propriétés des solutions vues en cours. On pourra tracer les solutions exactes et estimer les valeurs numérique de c par exemple.

- (a) cas monostable : f(u) = 0 si $0 \le u \le \theta$ et f(u) = 1 u si $\theta \le u \le 1$.
- (b) cas bistable : $f(u) = -u \text{ si } 0 \le u < \theta \text{ et } f(u) = 1 u \text{ si } \theta < u \le 1.$
- (c) cas Fisher-KPP : $f(u) = \rho u(1-u)$. Dans ce cas, on pourra vérifier qu'il existe une solution de l'équation différentielle (2) avec une vitesse $c = \frac{5\rho}{\sqrt{6}}$, donnée par

$$u(z) = \left(1 + (\sqrt{2} - 1)e^{\frac{z}{\sqrt{6}}}\right)^{-2} \tag{3}$$

3. Cas de deux espèces

On peut modéliser le cas de deux espèces en compétition à partir du système suivant :

$$\frac{\partial u}{\partial t} = f_1(u, v) + D \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial v}{\partial t} = f_2(u, v) + \frac{\partial^2 v}{\partial x^2}$$

$$x \in \mathbb{R}$$
 $t \in [0, T]$.

On pourra choisir comme dans l'exercice traité en cours :

$$f_1(u,v) = r_1 u(1 - u - K_1 v)$$
 et $f_2(u,v) = r_2 u(1 - v - K_2 u)$.

Etudier numériquement l'évolution des solutions de ce système en modifiant le programme écrit pour la résolution de l'équation (1).